News
11/21/2008
11:45 AM
George Crump
George Crump
Commentary
Connect Directly
RSS
E-Mail
50%
50%

SSD Can Mean Hard Cost Savings

In our last entry we talked about the time savings and potential increase in productivity and revenue that deploying SSD can enable. This entry we will focus on the hard cost savings associated with SSD. In the right situation, SSD can actually be less expensive than mechanical drives.

In our last entry we talked about the time savings and potential increase in productivity and revenue that deploying SSD can enable. This entry we will focus on the hard cost savings associated with SSD. In the right situation, SSD can actually be less expensive than mechanical drives.The first misnomer when comparing costs between SSD and mechanical drives is often those comparisons are to the cheapest SSD capacity vs. the cheapest drive capacity. This simply is not fair. SSD essentially has two classes of storage; Flash SSD and DRAM SSD and both deliver significantly better performance than tier one mechanical storage.

To get increased performance out of mechanical drives workarounds have been developed that are costly from both a power perspective and a physical assets perspective. Replacing these workarounds with SSD can further increase performance while reducing both power and cooling costs. In reality the price comparison should be to the very high end of tier one mechanical storage and should factor in all of these workarounds that people choose when trying to get the maximum performance out of tier one mechanical storage.

Pulling performance from mechanical drives often follows a path that while it increases performance also increases cost. Typically the first workaround for poor mechanical drive performance is to use standard array sets but with 15k RPM fiber channel drives. If this does not deliver the performance required the next step is to greatly extend the drive count, still using 15k RPM drives, but sometimes tripling or more the original set. These array groups are almost always front ended by fast storage controllers. If the system isn't a virtualized storage system that can perform wide striping, the last resort is to short stroke the drives in the array group, which formats the drives so that only the faster edge of the platter will be written to. While this will increase performance, it also severely reduces the addressable capacity of those drives.

In combination with the above techniques, performance-hungry applications will use a very high server count accessing the storage to increase parallelism. These drive configurations are now well suited to a small number of threads.

The result of all the workarounds is high acquisition, power, and cooling costs and of course a high degree of complexity, especially when compared with SSD. Depending on the environment, a choice needs to be made between Flash-based SSD (read heavy) and DRAM-based SSD (write heavy). Especially in write-heavy environments, only a fraction of the data needs to be mounted on SSD. The result is a significantly smaller disk allocation that requires less power and delivers better performance. All of this then reduces complexity.

When compared with a 50+ 15k RPM drive array that is short stroked, front-ended by multiple storage controllers, and requires a high server count for streaming, SSDs can reduce both CapEx and OpEx now. There is no need to wait for further price drop in memory.

Join us for our upcoming Webcast, SSD: Flash vs. DRAM...and the winner is?

Track us on Twitter: http://twitter.com/storageswiss.

Subscribe to our RSS feed.

George Crump is founder of Storage Switzerland, an analyst firm focused on the virtualization and storage marketplaces. It provides strategic consulting and analysis to storage users, suppliers, and integrators. An industry veteran of more than 25 years, Crump has held engineering and sales positions at various IT industry manufacturers and integrators. Prior to Storage Switzerland, he was CTO at one of the nation's largest integrators.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Flash Poll
Current Issue
Cartoon
Threat Intel Today
Threat Intel Today
The 397 respondents to our new survey buy into using intel to stay ahead of attackers: 85% say threat intelligence plays some role in their IT security strategies, and many of them subscribe to two or more third-party feeds; 10% leverage five or more.
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-6306
Published: 2014-08-22
Unspecified vulnerability on IBM Power 7 Systems 740 before 740.70 01Ax740_121, 760 before 760.40 Ax760_078, and 770 before 770.30 01Ax770_062 allows local users to gain Service Processor privileges via unknown vectors.

CVE-2014-0232
Published: 2014-08-22
Multiple cross-site scripting (XSS) vulnerabilities in framework/common/webcommon/includes/messages.ftl in Apache OFBiz 11.04.01 before 11.04.05 and 12.04.01 before 12.04.04 allow remote attackers to inject arbitrary web script or HTML via unspecified vectors, which are not properly handled in a (1)...

CVE-2014-3525
Published: 2014-08-22
Unspecified vulnerability in Apache Traffic Server 4.2.1.1 and 5.x before 5.0.1 has unknown impact and attack vectors, possibly related to health checks.

CVE-2014-3563
Published: 2014-08-22
Multiple unspecified vulnerabilities in Salt (aka SaltStack) before 2014.1.10 allow local users to have an unspecified impact via vectors related to temporary file creation in (1) seed.py, (2) salt-ssh, or (3) salt-cloud.

CVE-2014-3594
Published: 2014-08-22
Cross-site scripting (XSS) vulnerability in the Host Aggregates interface in OpenStack Dashboard (Horizon) before 2013.2.4, 2014.1 before 2014.1.2, and Juno before Juno-3 allows remote administrators to inject arbitrary web script or HTML via a new host aggregate name.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Three interviews on critical embedded systems and security, recorded at Black Hat 2014 in Las Vegas.