News
6/3/2011
12:08 PM
George Crump
George Crump
Commentary
Connect Directly
RSS
E-Mail
50%
50%

How To Design A 100 Year Data Retention Strategy

A cost effective hardware strategy is only the first step, a process and software strategy is vital to identifying for retention and moving it from primary storage.

100 years is a long time to retain anything let alone electronic data. While not everyone needs to retain data for that long, most organizations have retention needs at least in the seven to 10 year range. Most modern storage systems, however, are not designed to last more than five years, so how to create a storage strategy that can retain data for more than a century?

There are two components to a 100-year retention strategy. The first is to develop a hardware strategy that can cost effectively store that data for the next 100 years. The second is to develop a software and process strategy that will identify and move data to the retention storage area, ideally removing it from primary storage. I believe we need to be driving toward a data center where primary storage is small, fast, and only used for the most active set of data. Even at today's prices, many environments could be solid-state storage only for their primary tier.

I am specifically avoiding calling this storage area an archive tier. Using the term archive implies that this data will be moved to the archive, never to be accessed again. Thanks to initiatives like analytics, litigation management, and compliance, this data will be accessed and the system needs to be able to deliver that data in a timely manner relative to its age and no matter what all the data needs to be easily found.

This does not mean though that the disk tier needs to be disk only. I struggle with how organizations are going to afford to be able to keep 100 years of data on spinning disk. I don’t think all the power management and deduplication in the world is not going to make 100 years of disk only retention a reality. Additionally tape has overcome some of its challenges when it comes to use as a long term archive specifically in the form of the Long Term File System (LTFS) as we discuss in our article "What is LTFS?". The answer for the retention storage area is going to be a mixture of tape and disk.

The disk component needs to be a scaleable infrastructure where nodes of storage can be added to the disk area. More importantly, as we describe in our recent article "Building Affordable, Scalable Storage Infrastructures", these scaleable designs need to support mixed node types. This means nodes of varying disk capacity and processor types but still acting as one within the cluster. This is important because it allows for a rolling migration of storage nodes as equipment ages. Meaning that, over time, you can add new nodes with the latest processors and storage while at the same time gradually deactivating older nodes. This allows you to upgrade the cluster but not have to do a massive data migration, which, depending on the archive, may be almost impossible because of the capacity of the storage area.

The size of the disk component of this retention tier though should be kept at a reasonable level for what you need. Analytics (Big Data) will need to be larger because of the amount of data that needs to be scanned. Compliance and other forms of retention areas can have smaller disk areas but will still be large in comparison to primary storage. The fact that scale out systems can potentially scale to hundreds of nodes does not mean that you want to power, cool, and protect hundreds of nodes. At some point, and I know the disk guys won't like this, you really do need to push to tape. In the past, I have advocated for a disk only repository but LTFS in large part changes all that. I’ll explain why and how to use tape in this 100 year retention strategy in our next entry.

Follow Storage Switzerland on Twitter

George Crump is lead analyst of Storage Switzerland, an IT analyst firm focused on the storage and virtualization segments. Storage Switzerland's disclosure statement.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Flash Poll
Threat Intel Today
Threat Intel Today
The 397 respondents to our new survey buy into using intel to stay ahead of attackers: 85% say threat intelligence plays some role in their IT security strategies, and many of them subscribe to two or more third-party feeds; 10% leverage five or more.
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-0485
Published: 2014-09-02
S3QL 1.18.1 and earlier uses the pickle Python module unsafely, which allows remote attackers to execute arbitrary code via a crafted serialized object in (1) common.py or (2) local.py in backends/.

CVE-2014-3861
Published: 2014-09-02
Cross-site scripting (XSS) vulnerability in CDA.xsl in HL7 C-CDA 1.1 and earlier allows remote attackers to inject arbitrary web script or HTML via a crafted reference element within a nonXMLBody element.

CVE-2014-3862
Published: 2014-09-02
CDA.xsl in HL7 C-CDA 1.1 and earlier allows remote attackers to discover potentially sensitive URLs via a crafted reference element that triggers creation of an IMG element with an arbitrary URL in its SRC attribute, leading to information disclosure in a Referer log.

CVE-2014-5076
Published: 2014-09-02
The La Banque Postale application before 3.2.6 for Android does not prevent the launching of an activity by a component of another application, which allows attackers to obtain sensitive cached banking information via crafted intents, as demonstrated by the drozer framework.

CVE-2014-5136
Published: 2014-09-02
Cross-site scripting (XSS) vulnerability in Innovative Interfaces Sierra Library Services Platform 1.2_3 allows remote attackers to inject arbitrary web script or HTML via unspecified parameters.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
This episode of Dark Reading Radio looks at infosec security from the big enterprise POV with interviews featuring Ron Plesco, Cyber Investigations, Intelligence & Analytics at KPMG; and Chris Inglis & Chris Bell of Securonix.