News
1/7/2010
02:52 PM
George Crump
George Crump
Commentary
50%
50%

Do We Need Tier 1 Storage?

Tiered storage often means the development of a storage strategy that moves data from fast, expensive storage to slower SATA based storage. Tiered storage can also refer to the quality of the storage. A tier 1 storage system may have a higher level of reliability and DR functionality than a tier 2 system. The delta between the quality and capabilities of these tiers is quickly eroding, which makes the question a fair one to ask.

Tiered storage often means the development of a storage strategy that moves data from fast, expensive storage to slower SATA based storage. Tiered storage can also refer to the quality of the storage. A tier 1 storage system may have a higher level of reliability and DR functionality than a tier 2 system. The delta between the quality and capabilities of these tiers is quickly eroding, which makes the question a fair one to ask.When using "tier" to refer to the quality and capability of the system the focus often centers on a tier 1 storage platform. This is most often thought of in terms of large monolithic systems traditionally supplied by EMC and HDS. These systems often build out one frame at a time with drives being added to the frame as capacity is needed. The systems often have advanced software and backend storage interconnects to offer extremely high performance and reliability. Their use is often confined to data centers with extreme uptime requirements and performance needs.

Tier 2 systems offered by companies like NetApp, Xiotech, Compellent and Nexsan are typically represented by more modular systems where capacity is added to a storage compute engine one shelf at a time. These shelves typically have the drives pre-installed. These systems often have moderate storage software with moderate storage interconnects. The scaling and performance of these architectures is significantly greater than it used to be. As a result tier 2 systems often meet the storage I/O needs of many data centers. Eventually however there can be a limit when scaling. At some point capacity or I/O demands could outstrip the capabilities of the storage compute engine. This used to mean either the addition of an additional storage system or the upgrade to a tier 1 storage platform.

Blurring the line is systems with more clustered architectures like those from 3PAR, Isilon and Pillar Data. Even EMC has jumped into more of a clustered storage approach with their VMAX architectures. Clustered storage systems address the limitations of modular and eventually even monolithic systems by offering greater scale and performance. Most of these systems can grow performance and capacity independently. The result is that sophisticated scalable architectures are no longer the sole domain of tier 1 storage.

If performance and scale are no longer the sole property of tier 1 storage the remaining differentiation then becomes how does the software differentiate itself. The expectation of tier 1 storage systems is that they will offer non-disruptive upgradability, a resilient architecture that can maintain performance during failure and a multi-site, multi-mode disaster recovery capability.

For example the capability to replicate data synchronously (mirrored) to a second location miles away, then from that second location replicate (asynchronously) to a third location hundreds of miles away. The challenge is first that not every data center needs this kind of reliability and if they do companies like 3PAR, NetApp and others are closing the gap on the software side to bring this type of advanced functionality to the other storage tiers.

When tier one storage vendors start using standard hardware and more common interconnect architectures like clustering, the focus centers on the quality of the storage software. If the software capabilities of what is traditionally considered tier 2 or clustered storage closes the gap between its tier 1 software counterparts, you are left wondering why use tier 1 storage at all or at least including more vendors in the tier 1 designation.

Track us on Twitter: http://twitter.com/storageswiss

Subscribe to our RSS feed.

George Crump is lead analyst of Storage Switzerland, an IT analyst firm focused on the storage and virtualization segments. Find Storage Switzerland's disclosure statement here.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
Dark Reading Live EVENTS
INsecurity - For the Defenders of Enterprise Security
A Dark Reading Conference
While red team conferences focus primarily on new vulnerabilities and security researchers, INsecurity puts security execution, protection, and operations center stage. The primary speakers will be CISOs and leaders in security defense; the blue team will be the focus.
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: " I think Google Doodle is getting a little out of control"
Current Issue
Security Vulnerabilities: The Next Wave
Just when you thought it was safe, researchers have unveiled a new round of IT security flaws. Is your enterprise ready?
Flash Poll
[Strategic Security Report] Assessing Cybersecurity Risk
[Strategic Security Report] Assessing Cybersecurity Risk
As cyber attackers become more sophisticated and enterprise defenses become more complex, many enterprises are faced with a complicated question: what is the risk of an IT security breach? This report delivers insight on how today's enterprises evaluate the risks they face. This report also offers a look at security professionals' concerns about a wide variety of threats, including cloud security, mobile security, and the Internet of Things.
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.