News
1/20/2010
11:18 AM
George Crump
George Crump
Commentary
Connect Directly
RSS
E-Mail
50%
50%

Automated Tiering Methods

A few entries ago we opened up the subject of Automated Tiering with an explanation of why the technology is becoming so needed. As this series of entries continues we will review various storage vendors specific approach to automated tiering, but first it is helpful to understand the common methods that are employed.

A few entries ago we opened up the subject of Automated Tiering with an explanation of why the technology is becoming so needed. As this series of entries continues we will review various storage vendors specific approach to automated tiering, but first it is helpful to understand the common methods that are employed.Automated tiering is the dynamic placement of data on different classes of storage based on parameters that define how that data is being used, most often its level of activity that defines where the data goes. These classes of storage typically range from some form of memory based storage (RAM, FLASH SSD or DRAM SSD) to Fibre/SAS mechanical drives to SATA drives. Depending on the vendor they either supply all of these classes of storage or they merely provide the automated tiering intelligence and you provide the classes of storage.

Most of the focus with automated tiering is moving active data to the fastest tier possible. The idea is maximize the benefits of the most expensive and fastest class of storage. If you are paying more per GB for the memory based tier of storage then you want to make sure you buy as little as you have to and that it is almost always near full. Running memory based storage at 50% utilization is a significant waste of resources.

The first method of automated tiering is to treat this faster tier of storage as a large cache, similar to cache technologies that already exist on drives and storage systems today. The main difference is that they are significantly larger. The concept has merit. Cache technology is certainly well vetted yet vendors can still add value by customizing the approach. It can have a safer feel to it as well by using it in a read only mode, meaning that if the automated tiering device fails you have not lost data. Of course that also means in write heavy environments you would see no performance benefits.

Most of the caching systems and all of the second method of automated tiering solutions have the ability to treat this higher speed tier as something more permanent. Data will reside uniquely on a particular tier for a significant time. That time could be a few seconds, in the case of cache based systems, up to a few days on the second method, which I'll call the storage method for lack of a better term. The storage method systems also typically have a tunable setting that allows you to set how long data is uniquely on each tier of storage. While this method should lead to further performance boosts it may also lead to data loss if the automated tiering device fails or the tier which has the data fails. Typically though the storage method systems provide for some HA (highly available) functionality.

Next up we will look at the different protocols that are supported (file and block) as well as the level of granularity (block, file, LUN) that these solutions tend to offer.

Track us on Twitter: http://twitter.com/storageswiss

Subscribe to our RSS feed.

George Crump is lead analyst of Storage Switzerland, an IT analyst firm focused on the storage and virtualization segments. Find Storage Switzerland's disclosure statement here.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Flash Poll
Current Issue
Cartoon
DevOps’ Impact on Application Security
DevOps’ Impact on Application Security
Managing the interdependency between software and infrastructure is a thorny challenge. Often, it’s a “developers are from Mars, systems engineers are from Venus” situation.
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-0972
Published: 2014-08-01
The kgsl graphics driver for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, does not properly prevent write access to IOMMU context registers, which allows local users to select a custom page table, and consequently write ...

CVE-2014-2627
Published: 2014-08-01
Unspecified vulnerability in HP NonStop NetBatch G06.14 through G06.32.01, H06 through H06.28, and J06 through J06.17.01 allows remote authenticated users to gain privileges for NetBatch job execution via unknown vectors.

CVE-2014-3009
Published: 2014-08-01
The GDS component in IBM InfoSphere Master Data Management - Collaborative Edition 10.0 through 11.0 and InfoSphere Master Data Management Server for Product Information Management 9.0 and 9.1 does not properly handle FRAME elements, which makes it easier for remote authenticated users to conduct ph...

CVE-2014-3302
Published: 2014-08-01
user.php in Cisco WebEx Meetings Server 1.5(.1.131) and earlier does not properly implement the token timer for authenticated encryption, which allows remote attackers to obtain sensitive information via a crafted URL, aka Bug ID CSCuj81708.

CVE-2014-3534
Published: 2014-08-01
arch/s390/kernel/ptrace.c in the Linux kernel before 3.15.8 on the s390 platform does not properly restrict address-space control operations in PTRACE_POKEUSR_AREA requests, which allows local users to obtain read and write access to kernel memory locations, and consequently gain privileges, via a c...

Best of the Web
Dark Reading Radio