Cloud

4/9/2018
10:30 AM
Ory Segal
Ory Segal
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
100%
0%

Serverless Architectures: A Paradigm Shift in Application Security

"Serverless" forces software architects and developers to approach security by building it in rather than bolting it on. But there is a downside.

One of the biggest security upsides to developing on serverless architectures is that organizations don't have to deal with the daunting task of having to constantly apply security patches for the underlying operating system. These tasks are now in the domain of the serverless architecture provider.

Yet even though developers are no longer accountable for the many security tasks now handled by the serverless cloud provider, they are still responsible for designing robust applications and making sure that application code doesn't introduce application layer vulnerabilities. It seems that this responsibility is not going away any time soon.

Moreover, any configuration related to the application itself or to the cloud services it interacts with would still need to be secure; again, this is still the responsibility of the application owner.

In the serverless world, the cloud vendor and you share security responsibilities. The following images demonstrate the shared serverless security responsibilities model:

Application Owner: Responsibility for Owner "in" the Cloud


FaaS Provider: Responsibility for Owner "of" the Cloud

While serverless architectures introduce simplicity and elegance, it also introduces a new set of issues and application security challenges:

Increased attack surface: Serverless functions consume data from a wide range of event sources such as HTTP APIs, message queues, cloud storage, and Internet of Things device communications. This increases the attack surface dramatically, especially when messages use protocols and complex message structures, many of which cannot be inspected by standard application layer protections such as Web application firewalls.

Attack surface complexity: The attack surface in serverless architectures can be difficult for some to understand given that such architectures are still rather new. Many software developers and architects have yet to gain enough experience with the security risks and appropriate security protections required to secure such applications.

Overall system complexity: Visualizing and monitoring serverless architectures is still more complex than standard software environments

Inadequate security testing: Performing security testing for serverless architectures is more complex than testing standard applications, especially when such applications interact with remote third-party services or with back-end cloud services such as NoSQL databases, cloud storage, or stream processing services. In addition, automated scanning tools are currently not adapted to scanning serverless applications.

Traditional security protections become unsuitable: Since organizations that use serverless architectures do not have access to the physical (or virtual) server or its operating system, they are not at liberty to deploy traditional security layers such as endpoint protection, host-based intrusion prevention, Web application firewalls, or RASP (runtime application self-protection) solutions.

This last point mandates a drastic paradigm shift in application security for serverless architectures. By definition, in a serverless architecture you only control your application's code, and that's pretty much the only thing you own. This means that if you need to protect your own serverless code, your only option is to make sure that you write secure code and that you bake security into your application.

That's actually not a bad thing — serverless computing forces software architects and developers to approach security the way it should've been approached early on — by building security in rather than bolting it on.

Related Content:

Interop ITX 2018

Join Dark Reading LIVE for two cybersecurity summits at Interop ITX. Learn from the industry’s most knowledgeable IT security experts. Check out the security track here. Register with Promo Code DR200 and save $200.

 

Ory Segal is a world-renowned expert in application security, with 20 years of experience in the field. Ory is the CTO and co-founder of PureSec, a start-up that enables organizations to secure serverless applications. Prior to PureSec, Ory was senior director of threat ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Diversity: It's About Inclusion
Kelly Jackson Higgins, Executive Editor at Dark Reading,  4/25/2018
Coviello: Modern Security Threats are 'Less About the Techniques'
Kelly Sheridan, Staff Editor, Dark Reading,  4/24/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
How to Cope with the IT Security Skills Shortage
Most enterprises don't have all the in-house skills they need to meet the rising threat from online attackers. Here are some tips on ways to beat the shortage.
Flash Poll
[Strategic Security Report] Navigating the Threat Intelligence Maze
[Strategic Security Report] Navigating the Threat Intelligence Maze
Most enterprises are using threat intel services, but many are still figuring out how to use the data they're collecting. In this Dark Reading survey we give you a look at what they're doing today - and where they hope to go.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.