Attacks/Breaches

12/7/2017
10:10 AM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

Attacker 'Dwell Time' Average Dips Slightly to 86 Days

Real-world incident response investigation data from CrowdStrike reveals attacker trends with fileless malware, ransomware, and other weapons.

It now takes an organization just under three months on average to detect hackers embedded in their network, a modest improvement over years past.

That's one of the takeaways from data culled from 100 incident response investigations conducted by CrowdStrike this year. The security firm's newly published Cyber Intrusion Services Casebook 2017 shows that organizations are getting a bit better at sniffing out attackers hiding out in their network over the previous two years, when the average so-called dwell time by an attacker was more than 100 days.

"Dwell time continues to be a problem. There's a lot an adversary can do in 86 days," says Bryan York, director of services for CrowdStrike. "It's an improvement, but it's still too long."

York says organizations are gradually getting more visibility into activity in their networks, and that the security industry overall is doing a better job at integrating their different products via application programming interfaces. There also are better tools for correlating security data that speeds up response time, he notes, all of which help with detecting malicious activity.

CrowdStrike also saw an 11% increase in the number of cases where the victims spotted their own breach first, and didn't have to hear it from the feds or a third party.

The longer a hacker remains inside a target's network, the more damage he or she can do to steal information or disrupt the victim's business. CrowdStrike's team in its IR investigations also saw some shockingly long dwell times of 800 to 1,000 days in some cases, but those were "outliers," according to CrowdStrike.

Meanwhile, most of the cases involved fileless malware attacks, aka malware-free attacks. Some 66% of the cases used these more camouflaged techniques to infiltrate their victim, such as employing legitimate Windows services for nefarious activity. Attackers employed stolen credentials, code execution in memory, Remote Desktop Protocol, WMI, PowerShell, and stolen virtual private network credentials, for example.

"These [attacks] are increasing in sophistication," York says.

The most common initial attack vectors CrowdStrike saw in its client investigations were exploits against a Web server, Web application, and Web shells and file uploaders, 37%;  remote access (such as RDP, VPN), 23%; supply chain compromise, 12%; social engineering, phishing, or spear phishing, 11%; cloud-based service exploits, attacks against email portals, or other unauthorized access, 11%; and reconnaissance or other methods, 6%.

Wormables

But the new twist in 2017 attacks (think WannaCry and NotPetya) was self-spreading or self-propagating malware, a sort of new generation of the old network worm. Some of the CrowdStrike Services' clients suffered ransomware or other malware infections via this method, especially if they hadn't kept their systems updated with the latest patches.

"We observed quite a few" of these types of attacks, York says. "A single system got infected with ransomware, and there was more propagation across the environment without any user interaction, or phishing," etc., he says.

Much of the surge was courtesy of leaked NSA exploit kits EternalBlue and EternalRomance, which abuse Microsoft's Server Message Block (SMB) protocol to spread malware within a network. Attackers behind WannaCry and NotPetya didn't hesitate in weaponizing those tools to spread their ransomware.  

Much of the goal with these attacks has been destruction, for example, rather than monetary compensation, notes York. "We were involved with several companies whose businesses were halted because of those attacks," he says.

"We really see destruction as a gamechanger moving forward."

Related Content:

Kelly Jackson Higgins is Executive Editor at DarkReading.com. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
The Year in Security 2018
This Dark Reading Tech Digest explores the biggest news stories of 2018 that shaped the cybersecurity landscape.
Flash Poll
How Enterprises Are Attacking the Cybersecurity Problem
How Enterprises Are Attacking the Cybersecurity Problem
Data breach fears and the need to comply with regulations such as GDPR are two major drivers increased spending on security products and technologies. But other factors are contributing to the trend as well. Find out more about how enterprises are attacking the cybersecurity problem by reading our report today.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2016-10739
PUBLISHED: 2019-01-21
In the GNU C Library (aka glibc or libc6) through 2.28, the getaddrinfo function would successfully parse a string that contained an IPv4 address followed by whitespace and arbitrary characters, which could lead applications to incorrectly assume that it had parsed a valid string, without the possib...
CVE-2019-6499
PUBLISHED: 2019-01-21
Teradata Viewpoint before 14.0 and 16.20.00.02-b80 contains a hardcoded password of TDv1i2e3w4 for the viewpoint database account (in viewpoint-portal\conf\server.xml) that could potentially be exploited by malicious users to compromise the affected system.
CVE-2019-6500
PUBLISHED: 2019-01-21
In Axway File Transfer Direct 2.7.1, an unauthenticated Directory Traversal vulnerability can be exploited by issuing a specially crafted HTTP GET request with %2e instead of '.' characters, as demonstrated by an initial /h2hdocumentation//%2e%2e/ substring.
CVE-2019-6498
PUBLISHED: 2019-01-21
GattLib 0.2 has a stack-based buffer over-read in gattlib_connect in dbus/gattlib.c because strncpy is misused.
CVE-2019-6497
PUBLISHED: 2019-01-20
Hotels_Server through 2018-11-05 has SQL Injection via the controller/fetchpwd.php username parameter.