Attacks/Breaches

12/28/2016
02:15 PM
Connect Directly
Twitter
Twitter
RSS
E-Mail
50%
50%

Another Massive DDoS Closes Out 2016, But Mirai Not To Blame

Using a new malware variant called Leet, the 650 Gbps DDoS attack matched Mirai's floods of traffic.

This past year has been one for the record books when it comes to distributed denial of service (DDoS) attacks, so it is only proper that 2016 closes out with news of another massive DDoS attack, reported by Imperva researchers. According to them, the Imperva Incapsula network was forced to mitigate a 650 Gbps DDoS attack just a few days before Christmas.

One of the largest DDoS attacks on record, this particular assault is notable because it strayed from the bad guys' recent DDoS playbook. For much of the year, attackers have been testing the bounds of DDoS traffic-pushing capabilities using the advanced Mirai botnet, which consists of hijacked IoT devices. This time around, Imperva researchers say the holiday attack came at the hands of a new malicious network it calls Leet Botnet.

Earlier this fall, Mirai was behind the 620 Gbps attack against KrebsOnSecurity.com, a 990 Gbps attack against French hosting provider OVH that reportedly utilized a network that could have been capable of pushing up to 1.5 Tbps in malicious traffic, and the massive DDoS in October against DNS provider Dyn that reached an estimated 1.2 Tbps in malicious traffic. To pull off these attacks, Mirai primarily relied on tens of thousands of IoT devices, most of which were compromised CCTV cameras and DVR machines.

Imperva researchers report that spoofed IPs make it impossible to figure out what kind of devices carried out the Christmas attack. Their analysis of the payload does at least lead them to conclusively determine it was another botnet wreaking havoc.

"So far, all of the huge DDoS attacks of 2016 were associated with the Mirai malware," wrote Avishay Zawoznik and Dima Bekerman of Imperva. "However, the payload characteristics clearly show that neither Mirai nor one of its more recent variants was used for this assault."

Like many recent DDoS attacks, the Leet Botnet used a combination of both large and small SYN packet sizes "to both clog network pipes and bring down network switches," the pair wrote. The smaller packets were used to push up packet rates up past 150 million packets per second (Mpps), while the larger ones were used to increase the overall attack capacity. Imperva dubbed the botnet Leet because of a 'signature' left in some of the TCP Options headers of the smaller packets that spelled out "1337."

What really interested researchers, though, was Leet's larger payloads, which were populated by shredded lists of IP addresses that indicated Leet was accessing local files of compromised devices and scrambling them up to generate its payloads.

"Basically, the entire attack was just a mishmash of pulverized system files from thousands upon thousands of compromised devices," Zawoznik and Bekerman wrote. "It makes for an effective obfuscation technique that can be used to produce an unlimited number of extremely randomized payloads. Using these payloads, an offender can circumvent signature-based security systems that mitigate attacks by identifying similarities in the content of network packets." 

This year we saw DDoS attacks escalate to record heights and these high-powered botnets are a symptom of the times.

So far, all of the huge DDoS attacks of 2016 were associated with the Mirai malware. However, the payload characteristics clearly show that neither Mirai nor one of its more recent variants was used for this assault.

 

Related content:

Ericka Chickowski specializes in coverage of information technology and business innovation. She has focused on information security for the better part of a decade and regularly writes about the security industry as a contributor to Dark Reading.  View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
1.9 Billion Data Records Exposed in First Half of 2017
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/20/2017
Get Serious about IoT Security
Derek Manky, Global Security Strategist, Fortinet,  9/20/2017
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Security Vulnerabilities: The Next Wave
Just when you thought it was safe, researchers have unveiled a new round of IT security flaws. Is your enterprise ready?
Flash Poll
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
[Strategic Security Report] How Enterprises Are Attacking the IT Security Problem
Enterprises are spending more of their IT budgets on cybersecurity technology. How do your organization's security plans and strategies compare to what others are doing? Here's an in-depth look.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.