Attacks/Breaches

12/28/2016
02:15 PM
Connect Directly
Twitter
Twitter
RSS
E-Mail
50%
50%

Another Massive DDoS Closes Out 2016, But Mirai Not To Blame

Using a new malware variant called Leet, the 650 Gbps DDoS attack matched Mirai's floods of traffic.

This past year has been one for the record books when it comes to distributed denial of service (DDoS) attacks, so it is only proper that 2016 closes out with news of another massive DDoS attack, reported by Imperva researchers. According to them, the Imperva Incapsula network was forced to mitigate a 650 Gbps DDoS attack just a few days before Christmas.

One of the largest DDoS attacks on record, this particular assault is notable because it strayed from the bad guys' recent DDoS playbook. For much of the year, attackers have been testing the bounds of DDoS traffic-pushing capabilities using the advanced Mirai botnet, which consists of hijacked IoT devices. This time around, Imperva researchers say the holiday attack came at the hands of a new malicious network it calls Leet Botnet.

Earlier this fall, Mirai was behind the 620 Gbps attack against KrebsOnSecurity.com, a 990 Gbps attack against French hosting provider OVH that reportedly utilized a network that could have been capable of pushing up to 1.5 Tbps in malicious traffic, and the massive DDoS in October against DNS provider Dyn that reached an estimated 1.2 Tbps in malicious traffic. To pull off these attacks, Mirai primarily relied on tens of thousands of IoT devices, most of which were compromised CCTV cameras and DVR machines.

Imperva researchers report that spoofed IPs make it impossible to figure out what kind of devices carried out the Christmas attack. Their analysis of the payload does at least lead them to conclusively determine it was another botnet wreaking havoc.

"So far, all of the huge DDoS attacks of 2016 were associated with the Mirai malware," wrote Avishay Zawoznik and Dima Bekerman of Imperva. "However, the payload characteristics clearly show that neither Mirai nor one of its more recent variants was used for this assault."

Like many recent DDoS attacks, the Leet Botnet used a combination of both large and small SYN packet sizes "to both clog network pipes and bring down network switches," the pair wrote. The smaller packets were used to push up packet rates up past 150 million packets per second (Mpps), while the larger ones were used to increase the overall attack capacity. Imperva dubbed the botnet Leet because of a 'signature' left in some of the TCP Options headers of the smaller packets that spelled out "1337."

What really interested researchers, though, was Leet's larger payloads, which were populated by shredded lists of IP addresses that indicated Leet was accessing local files of compromised devices and scrambling them up to generate its payloads.

"Basically, the entire attack was just a mishmash of pulverized system files from thousands upon thousands of compromised devices," Zawoznik and Bekerman wrote. "It makes for an effective obfuscation technique that can be used to produce an unlimited number of extremely randomized payloads. Using these payloads, an offender can circumvent signature-based security systems that mitigate attacks by identifying similarities in the content of network packets." 

This year we saw DDoS attacks escalate to record heights and these high-powered botnets are a symptom of the times.

So far, all of the huge DDoS attacks of 2016 were associated with the Mirai malware. However, the payload characteristics clearly show that neither Mirai nor one of its more recent variants was used for this assault.

 

Related content:

Ericka Chickowski specializes in coverage of information technology and business innovation. She has focused on information security for the better part of a decade and regularly writes about the security industry as a contributor to Dark Reading.  View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
6 Security Trends for 2018/2019
Curtis Franklin Jr., Senior Editor at Dark Reading,  10/15/2018
6 Reasons Why Employees Violate Security Policies
Ericka Chickowski, Contributing Writer, Dark Reading,  10/16/2018
Getting Up to Speed with "Always-On SSL"
Tim Callan, Senior Fellow, Comodo CA,  10/18/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Latest Comment: Too funny!
Current Issue
Flash Poll
The Risk Management Struggle
The Risk Management Struggle
The majority of organizations are struggling to implement a risk-based approach to security even though risk reduction has become the primary metric for measuring the effectiveness of enterprise security strategies. Read the report and get more details today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-10839
PUBLISHED: 2018-10-16
Qemu emulator <= 3.0.0 built with the NE2000 NIC emulation support is vulnerable to an integer overflow, which could lead to buffer overflow issue. It could occur when receiving packets over the network. A user inside guest could use this flaw to crash the Qemu process resulting in DoS.
CVE-2018-13399
PUBLISHED: 2018-10-16
The Microsoft Windows Installer for Atlassian Fisheye and Crucible before version 4.6.1 allows local attackers to escalate privileges because of weak permissions on the installation directory.
CVE-2018-18381
PUBLISHED: 2018-10-16
Z-BlogPHP 1.5.2.1935 (Zero) has a stored XSS Vulnerability in zb_system/function/c_system_admin.php via the Content-Type header during the uploading of image attachments.
CVE-2018-18382
PUBLISHED: 2018-10-16
Advanced HRM 1.6 allows Remote Code Execution via PHP code in a .php file to the user/update-user-avatar URI, which can be accessed through an "Update Profile" "Change Picture" (aka user/edit-profile) action.
CVE-2018-18374
PUBLISHED: 2018-10-16
XSS exists in the MetInfo 6.1.2 admin/index.php page via the anyid parameter.