Analytics // Threat Intelligence
Guest Blog // Selected Security Content Provided By Intel
What's This?
1/21/2014
12:02 PM
Tom Quillin
Tom Quillin
Guest Blogs
Connect Directly
LinkedIn
Twitter
RSS
E-Mail
50%
50%

Machine Resiliency as a Defense

If you follow news on cyber security, you might be led to think PCs and endpoints have become increasingly vulnerable.

If you follow news on cyber security, you might be led to think PCs and endpoints have become increasingly vulnerable. News today describes more complex attacks, from more sophisticated attackers, than ever. But there is good news too. In 2014, the PC you unbox and provision on your network is likely to be a better machine, better able to withstand attack, more resilient than a PC of just a few years ago.

Those improvements are the result of efforts and investments in security assurance from OSVs, ISVs, OEMs and hardware suppliers. Let's take BIOS, for example. BIOS isn't often fodder for headlines, but it matters. BIOS is the low level firmware that controls machine operations before the OS takes control. Even less visible is the BIOS's contribution to system security in testing, verifying and authenticating the hardware to ensure it has not been compromised.

When BIOS was developed back in the 1970s, security goals were secondary. BIOS performed powerful but rudimentary startup and initialization functions. Modern BIOS has evolved into a more powerful interface properly known as Unified Extensible Firmware Interface (UEFI), with an industry standard setting organization (the UEFI Forum) supporting an ecosystem of hardware developers and implementers.

UEFI's most recent specification (UEFI 2.3.1) addresses resiliency and security features with the addition of Secure Boot. Secure Boot helps firmware, OS and hardware providers validate that each stage of system startup is loading authorized code. This approach helps impede malware, such as a rootkit that can replace the boot loader – even before the full defenses of the operating system and security software are up and running. UEFI Secure Boot can block unauthorized executables and drivers from loading into the system. If unauthorized software tries to load, UEFI halts the boot sequence. UEFI has worked hand-in-hand with industry-leading vendors to ensure wide-spread compatibility and adoption of Secure Boot.

These types of defenses get built into many modern PCs without your even having to worry about it. How does change like this happen? It's a great case study in technology leaders and competitors working together for the common good.

Over the past few years, the collaboration has extended. The National Institute of Standards and Technology (NIST) plays a key role in helping government-run IT organizations sort through emerging technology standards and helps government buyers understand what to look for as consumers of new technology.

In 2011 NIST published guidelines for enterprise-class platforms, specifying BIOS security features and best practices for BIOS implementation and configuration. While the guidance is primarily targeted and written for the benefit of government agencies, they are widely adopted by the private sector as well. You don't need to become an expert in assembly language to take advantage of these recommendations; they've been documented in a NIST Special Publication (NIST SP800-147) easily available on the NIST website.

There is much more to the story of how resiliency has been engineered into system defense, including the role of TPMs and detail about how modern operating systems help secure the boot process. We can't cover it all here, but if you are interested in finding out more take a look at some of these sites – or continue the conversation with a comment here.

UEFI Secure Boot In Modern Computer Security Solutions

BIOS Protection Guidelines

Follow me on Twitter: @TomQuillin

Tom Quillin is the Director of Cyber Security for Technologies and Initiatives at Intel Corp. He is responsible for identifying security risks, as well as contributing to product planning that addresses future security challenges. He also manages Intel's policy positions on ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
macker490
50%
50%
macker490,
User Rank: Ninja
1/27/2014 | 12:24:17 PM
re: Machine Resiliency as a Defense
you are simply moving the defense from the O/S to the BIOS and flash program. it will be necessary to enforce rule 1 for the BIOS and flash programming: authorized, signed updates only, and only via the approved procedure.

if you put that in the O/S you get the same thing.
Register for Dark Reading Newsletters
Partner Perspectives
What's This?
In a digital world inundated with advanced security threats, Intel Security seeks to transform how we live and work to keep our information secure. Through hardware and software development, Intel Security delivers robust solutions that integrate security into every layer of every digital device. In combining the security expertise of McAfee with the innovation, performance, and trust of Intel, this vision becomes a reality.

As we rely on technology to enhance our everyday and business life, we must too consider the security of the intellectual property and confidential data that is housed on these devices. As we increase the number of devices we use, we increase the number of gateways and opportunity for security threats. Intel Security takes the “security connected” approach to ensure that every device is secure, and that all security solutions are seamlessly integrated.
Featured Writers
White Papers
Cartoon
Current Issue
Dark Reading's October Tech Digest
Fast data analysis can stymie attacks and strengthen enterprise security. Does your team have the data smarts?
Flash Poll
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-0619
Published: 2014-10-23
Untrusted search path vulnerability in Hamster Free ZIP Archiver 2.0.1.7 allows local users to execute arbitrary code and conduct DLL hijacking attacks via a Trojan horse dwmapi.dll that is located in the current working directory.

CVE-2014-2230
Published: 2014-10-23
Open redirect vulnerability in the header function in adclick.php in OpenX 2.8.10 and earlier allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL in the (1) dest parameter to adclick.php or (2) _maxdest parameter to ck.php.

CVE-2014-7281
Published: 2014-10-23
Cross-site request forgery (CSRF) vulnerability in Shenzhen Tenda Technology Tenda A32 Router with firmware 5.07.53_CN allows remote attackers to hijack the authentication of administrators for requests that reboot the device via a request to goform/SysToolReboot.

CVE-2014-7292
Published: 2014-10-23
Open redirect vulnerability in the Click-Through feature in Newtelligence dasBlog 2.1 (2.1.8102.813), 2.2 (2.2.8279.16125), and 2.3 (2.3.9074.18820) allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL in the url parameter to ct.ashx.

CVE-2014-8071
Published: 2014-10-23
Multiple cross-site scripting (XSS) vulnerabilities in OpenMRS 2.1 Standalone Edition allow remote attackers to inject arbitrary web script or HTML via the (1) givenName, (2) familyName, (3) address1, or (4) address2 parameter to registrationapp/registerPatient.page; the (5) comment parameter to all...

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Follow Dark Reading editors into the field as they talk with noted experts from the security world.